11 research outputs found

    Gliotoxin effects on fungal growth: Mechanisms and exploitation

    Get PDF
    Although initially investigated for its antifungal properties, little is actually known about the effect of gliotoxin on Aspergillus fumigatus and other fungi. We have observed that exposure of A. fumigatus to exogenous gliotoxin (14 lg/ml), under gliotoxin-limited growth conditions, results in significant alteration of the expression of 27 proteins (up- and down-regulated >1.9-fold; p < 0.05) including de novo expression of Cu, Zn superoxide dismutase, up-regulated allergen Asp f3 expression and down-regulated catalase and a peroxiredoxin levels. Significantly elevated glutathione GSH levels (p < 0.05), along with concomitant resistance to diamide, were evident in A. fumigatus ∆gliT, lacking gliotoxin oxidoreductase, a gliotoxin self-protection gene. Saccharomyces cerevisiae deletents (∆sod1 and ∆yap1) were hypersensitive to exogenous gliotoxin, while ∆gsh1 was resistant. Significant gliotoxin-mediated (5 µg/ml) growth inhibition (p < 0.001) of Aspergillus nidulans, Aspergillus terreus, Aspergillus niger, Cochliobolus heterostrophus and Neurospora crassa was also observed. Growth of Aspergillus flavus, Fusarium graminearum and Aspergillus oryzae was significantly inhibited (p < 0.001) at gliotoxin (10 lg/ml), indicating differential gliotoxin sensitivity amongst fungi. Re-introduction of gliT into A. fumigatus DgliT, at a different locus (ctsD; AFUA_4G07040, an aspartic protease), with selection on gliotoxin, facilitated deletion of ctsD without use of additional antibiotic selection markers. Absence of ctsD expression was accompanied by restoration of gliT expression, and resistance to gliotoxin. Thus, we propose gliT/gliotoxin as a useful selection marker system for fungal transformation. Finally, we suggest incorporation of gliotoxin sensitivity assays into all future fungal functional genomic studies

    Regulation of Nonribosomal Peptide Synthesis: bis-Thiomethylation Attenuates Gliotoxin Biosynthesis in Aspergillus fumigatus

    Get PDF
    Gliotoxin is a redox-active nonribosomal peptide produced by Aspergillus fumigatus. Like many other disulfide-containing epipolythiodioxopiperazines, a bis-thiomethylated form is also produced. In the case of gliotoxin, bisdethiobis(methylthio)gliotoxin (BmGT) is formed for unknown reasons by a cryptic enzyme. Here, we identify the S-adenosylmethionine- dependent gliotoxin bis-thiomethyltransferase (GtmA), which converts dithiogliotoxin to BmGT. This activity, which is induced by exogenous gliotoxin, is only detectable in protein lysates of A. fumigatus deficient in the gliotoxin oxidoreductase, gliT. Thus, GtmA is capable of substrate bis-thiomethylation. Deletion of gtmA completely abrogates BmGT formation and we now propose that the purpose of BmGT formation is primarily to attenuate gliotoxin biosynthesis. Phylogenetic analysis reveals 124 GtmA homologs within the Ascomycota phylum. GtmA is encoded outside the gliotoxin biosynthetic cluster and primarily serves to negatively regulate gliotoxin biosynthesis. This mechanism of postbiosynthetic regulation of nonribosomal peptide synthesis appears to be quite unusual

    The Aspergillus fumigatus Protein GliK Protects against Oxidative Stress and Is Essential for Gliotoxin Biosynthesis

    Get PDF
    The function of a number of genes in the gliotoxin biosynthetic cluster (gli) in Aspergillus fumigatus remains unknown. Here, we demonstrate that gliK deletion from two strains of A. fumigatus completely abolished gliotoxin biosynthesis. Furthermore, exogenous H2O2 (1 mM), but not gliotoxin, significantly induced A. fumigatus gliK expression (P 0.0101). While both mutants exhibited significant sensitivity to both exogenous gliotoxin (P<0.001) and H2O2 (P<0.01), unexpectedly, exogenous gliotoxin relieved H2O2-induced growth inhibition in a dose-dependent manner (0 to 10 g/ml). Gliotoxin-containing organic extracts derived from A. fumigatus ATCC 26933 significantly inhibited (P<0.05) the growth of the gliK26933 deletion mutant. The A. fumigatus gliK26933 mutant secreted metabolites, devoid of disulfide linkages or free thiols, that were detectable by reverse- phase high-performance liquid chromatography and liquid chromatography-mass spectrometry with m/z 394 to 396. These metabolites (m/z 394 to 396) were present at significantly higher levels in the culture supernatants of the A. fumigatus gliK26933 mutant than in those of the wild type (P0.0024 [fold difference, 24] and P0.0003 [fold difference, 9.6], respectively) and were absent from A. fumigatus gliG. Significantly elevated levels of ergothioneine were present in aqueous mycelial extracts of the A. fumigatus gliK26933 mutant compared to the wild type (P<0.001). Determination of the gliotoxin uptake rate revealed a significant difference (P0.0045) between that of A. fumigatus ATCC 46645 (9.3 pg/mg mycelium/min) and the gliK46645 mutant (31.4 pg/mg mycelium/min), strongly suggesting that gliK absence and the presence of elevated ergothioneine levels impede exogenously added gliotoxin efflux. Our results confirm a role for gliK in gliotoxin biosynthesis and reveal new insights into gliotoxin functionality in A. fumigatus

    Resistance is not futile: gliotoxin biosynthesis, functionality and utility

    Get PDF
    Gliotoxin biosynthesis is encoded by the gli gene cluster in Aspergillus fumigatus. The biosynthesis of gliotoxin is influenced by a suite of transcriptionally-active regulatory proteins and a bis-thiomethyltransferase. A self-protection system against gliotoxin is present in A. fumigatus. Several additional metabolites are also produced via the gliotoxin biosynthetic pathway. Moreover, the biosynthesis of unrelated natural products appears to be influenced either by gliotoxin or by the activity of specific reactions within the biosynthetic pathway. The activity of gliotoxin against animal cells and fungi, often mediated by interference with redox homeostasis or protein modification, is revealing new metabolic interactions within eukaryotic systems. Nature has provided a most useful natural product with which to reveal some of its many molecular secret

    Gliotoxin effects on fungal growth: Mechanisms and exploitation

    No full text
    Although initially investigated for its antifungal properties, little is actually known about the effect of gliotoxin on Aspergillus fumigatus and other fungi. We have observed that exposure of A. fumigatus to exogenous gliotoxin (14 lg/ml), under gliotoxin-limited growth conditions, results in significant alteration of the expression of 27 proteins (up- and down-regulated >1.9-fold; p < 0.05) including de novo expression of Cu, Zn superoxide dismutase, up-regulated allergen Asp f3 expression and down-regulated catalase and a peroxiredoxin levels. Significantly elevated glutathione GSH levels (p < 0.05), along with concomitant resistance to diamide, were evident in A. fumigatus ∆gliT, lacking gliotoxin oxidoreductase, a gliotoxin self-protection gene. Saccharomyces cerevisiae deletents (∆sod1 and ∆yap1) were hypersensitive to exogenous gliotoxin, while ∆gsh1 was resistant. Significant gliotoxin-mediated (5 µg/ml) growth inhibition (p < 0.001) of Aspergillus nidulans, Aspergillus terreus, Aspergillus niger, Cochliobolus heterostrophus and Neurospora crassa was also observed. Growth of Aspergillus flavus, Fusarium graminearum and Aspergillus oryzae was significantly inhibited (p < 0.001) at gliotoxin (10 lg/ml), indicating differential gliotoxin sensitivity amongst fungi. Re-introduction of gliT into A. fumigatus DgliT, at a different locus (ctsD; AFUA_4G07040, an aspartic protease), with selection on gliotoxin, facilitated deletion of ctsD without use of additional antibiotic selection markers. Absence of ctsD expression was accompanied by restoration of gliT expression, and resistance to gliotoxin. Thus, we propose gliT/gliotoxin as a useful selection marker system for fungal transformation. Finally, we suggest incorporation of gliotoxin sensitivity assays into all future fungal functional genomic studies

    Gliotoxin effects on fungal growth: Mechanisms and exploitation

    No full text
    Although initially investigated for its antifungal properties, little is actually known about the effect of gliotoxin on Aspergillus fumigatus and other fungi. We have observed that exposure of A. fumigatus to exogenous gliotoxin (14 lg/ml), under gliotoxin-limited growth conditions, results in significant alteration of the expression of 27 proteins (up- and down-regulated >1.9-fold; p < 0.05) including de novo expression of Cu, Zn superoxide dismutase, up-regulated allergen Asp f3 expression and down-regulated catalase and a peroxiredoxin levels. Significantly elevated glutathione GSH levels (p < 0.05), along with concomitant resistance to diamide, were evident in A. fumigatus ∆gliT, lacking gliotoxin oxidoreductase, a gliotoxin self-protection gene. Saccharomyces cerevisiae deletents (∆sod1 and ∆yap1) were hypersensitive to exogenous gliotoxin, while ∆gsh1 was resistant. Significant gliotoxin-mediated (5 µg/ml) growth inhibition (p < 0.001) of Aspergillus nidulans, Aspergillus terreus, Aspergillus niger, Cochliobolus heterostrophus and Neurospora crassa was also observed. Growth of Aspergillus flavus, Fusarium graminearum and Aspergillus oryzae was significantly inhibited (p < 0.001) at gliotoxin (10 lg/ml), indicating differential gliotoxin sensitivity amongst fungi. Re-introduction of gliT into A. fumigatus DgliT, at a different locus (ctsD; AFUA_4G07040, an aspartic protease), with selection on gliotoxin, facilitated deletion of ctsD without use of additional antibiotic selection markers. Absence of ctsD expression was accompanied by restoration of gliT expression, and resistance to gliotoxin. Thus, we propose gliT/gliotoxin as a useful selection marker system for fungal transformation. Finally, we suggest incorporation of gliotoxin sensitivity assays into all future fungal functional genomic studies

    Genomic and Proteomic Dissection of the Ubiquitous Plant Pathogen, Armillaria mellea: Toward a New Infection Model System

    Get PDF
    Armillaria mellea is a major plant pathogen. Yet, no large-scale “-omics” data are available to enable new studies, and limited experimental models are available to investigate basidiomycete pathogenicity. Here we reveal that the A. mellea genome comprises 58.35 Mb, contains 14473 gene models, of average length 1575 bp (4.72 introns/gene). Tandem mass spectrometry identified 921 mycelial (n = 629 unique) and secreted (n = 183 unique) proteins. Almost 100 mycelial proteins were either species-specific or previously unidentified at the protein level. A number of proteins (n = 111) was detected in both mycelia and culture supernatant extracts. Signal sequence occurrence was 4-fold greater for secreted (50.2%) compared to mycelial (12%) proteins. Analyses revealed a rich reservoir of carbohydrate degrading enzymes, laccases, and lignin peroxidases in the A. mellea proteome, reminiscent of both basidiomycete and ascomycete glycodegradative arsenals. We discovered that A. mellea exhibits a specific killing effect against Candida albicans during coculture. Proteomic investigation of this interaction revealed the unique expression of defensive and potentially offensive A. mellea proteins (n = 30). Overall, our data reveal new insights into the origin of basidiomycete virulence and we present a new model system for further studies aimed at deciphering fungal pathogenic mechanisms

    Gliotoxin effects on fungal growth: Mechanisms and exploitation

    Get PDF
    Although initially investigated for its antifungal properties, little is actually known about the effect of gliotoxin on Aspergillus fumigatus and other fungi. We have observed that exposure of A. fumigatus to exogenous gliotoxin (14 lg/ml), under gliotoxin-limited growth conditions, results in significant alteration of the expression of 27 proteins (up- and down-regulated >1.9-fold; p < 0.05) including de novo expression of Cu, Zn superoxide dismutase, up-regulated allergen Asp f3 expression and down-regulated catalase and a peroxiredoxin levels. Significantly elevated glutathione GSH levels (p < 0.05), along with concomitant resistance to diamide, were evident in A. fumigatus ∆gliT, lacking gliotoxin oxidoreductase, a gliotoxin self-protection gene. Saccharomyces cerevisiae deletents (∆sod1 and ∆yap1) were hypersensitive to exogenous gliotoxin, while ∆gsh1 was resistant. Significant gliotoxin-mediated (5 µg/ml) growth inhibition (p < 0.001) of Aspergillus nidulans, Aspergillus terreus, Aspergillus niger, Cochliobolus heterostrophus and Neurospora crassa was also observed. Growth of Aspergillus flavus, Fusarium graminearum and Aspergillus oryzae was significantly inhibited (p < 0.001) at gliotoxin (10 lg/ml), indicating differential gliotoxin sensitivity amongst fungi. Re-introduction of gliT into A. fumigatus DgliT, at a different locus (ctsD; AFUA_4G07040, an aspartic protease), with selection on gliotoxin, facilitated deletion of ctsD without use of additional antibiotic selection markers. Absence of ctsD expression was accompanied by restoration of gliT expression, and resistance to gliotoxin. Thus, we propose gliT/gliotoxin as a useful selection marker system for fungal transformation. Finally, we suggest incorporation of gliotoxin sensitivity assays into all future fungal functional genomic studies

    The Aspergillus fumigatus Protein GliK Protects against Oxidative Stress and Is Essential for Gliotoxin Biosynthesis

    No full text
    The function of a number of genes in the gliotoxin biosynthetic cluster (gli) in Aspergillus fumigatus remains unknown. Here, we demonstrate that gliK deletion from two strains of A. fumigatus completely abolished gliotoxin biosynthesis. Furthermore, exogenous H2O2 (1 mM), but not gliotoxin, significantly induced A. fumigatus gliK expression (P 0.0101). While both mutants exhibited significant sensitivity to both exogenous gliotoxin (P<0.001) and H2O2 (P<0.01), unexpectedly, exogenous gliotoxin relieved H2O2-induced growth inhibition in a dose-dependent manner (0 to 10 g/ml). Gliotoxin-containing organic extracts derived from A. fumigatus ATCC 26933 significantly inhibited (P<0.05) the growth of the gliK26933 deletion mutant. The A. fumigatus gliK26933 mutant secreted metabolites, devoid of disulfide linkages or free thiols, that were detectable by reverse- phase high-performance liquid chromatography and liquid chromatography-mass spectrometry with m/z 394 to 396. These metabolites (m/z 394 to 396) were present at significantly higher levels in the culture supernatants of the A. fumigatus gliK26933 mutant than in those of the wild type (P0.0024 [fold difference, 24] and P0.0003 [fold difference, 9.6], respectively) and were absent from A. fumigatus gliG. Significantly elevated levels of ergothioneine were present in aqueous mycelial extracts of the A. fumigatus gliK26933 mutant compared to the wild type (P<0.001). Determination of the gliotoxin uptake rate revealed a significant difference (P0.0045) between that of A. fumigatus ATCC 46645 (9.3 pg/mg mycelium/min) and the gliK46645 mutant (31.4 pg/mg mycelium/min), strongly suggesting that gliK absence and the presence of elevated ergothioneine levels impede exogenously added gliotoxin efflux. Our results confirm a role for gliK in gliotoxin biosynthesis and reveal new insights into gliotoxin functionality in A. fumigatus
    corecore